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Abstract1

Background: In autumn 2020, many countries, including the Netherlands, are experiencing a second wave2

of the COVID-19 pandemic. Health policymakers are struggling with choosing the right mix of measures to3

keep the COVID-19 case numbers under control, but still allow a minimum of social and economic activity.4

The priority to keep schools open is high, but the role of school-based contacts in the epidemiology of SARS-5

CoV-2 is incompletely understood. We used a transmission model to estimate the impact of school contacts6

on transmission of SARS-CoV-2 and to assess the effects of school-based measures, including school closure, on7

controlling the pandemic at different time points during the pandemic.8

Methods and Findings: The age-structured model was fitted to age-specific seroprevalence and hospital9

admission data from the Netherlands during spring 2020. Compared to adults older than 60 years, the estimated10

susceptibility was 23% (95%CrI 20—28%) for children aged 0 to 20 years and 61% (95%CrI 50%—72%) for the11

age group of 20 to 60 years. The time points considered in the analyses were (i) August 2020 when the effective12

reproduction number (Re) was estimated to be 1.31 (95%CrI 1.15—2.07), schools just opened after the summer13

holidays and measures were reinforced with the aim to reduce Re to a value below 1, and (ii) November 202014

when measures had reduced Re to 1.00 (95%CrI 0.94—1.33). In this period schools remained open. Our model15

predicts that keeping schools closed after the summer holidays, in the absence of other measures, would have16

reduced Re by 10% (from 1.31 to 1.18 (95%CrI 1.04—1.83)) and thus would not have prevented the second wave17

in autumn 2020. Reducing non-school-based contacts in August 2020 to the level observed during the first wave18

of the pandemic would have reduced Re to 0.83 (95%CrI 0.75—1.10). Yet, this reduction was not achieved and19

the observed Re in November was 1.00. Our model predicts that closing schools in November 2020 could reduce20

Re from the observed value of 1.00 to 0.84 (95%CrI 0.81—0.90), with unchanged non-school based contacts.21

Reductions in Re due to closing schools in November 2020 were 8% for 10 to 20 years old children, 5% for 5 to22

10 years old children and negligible for 0 to 5 years old children.23

Conclusions: The impact of measures reducing school-based contacts, including school closure, depends on the24

remaining opportunities to reduce non-school-based contacts. If opportunities to reduce Re with non-school-25

based measures are exhausted or undesired and Re is still close to 1, the additional benefit of school-based26

measures may be considerable, particularly among the older school children.27

Introduction28

In autumn 2020, many countries, including the Netherlands, are experiencing a second wave of the COVID-1929

pandemic [1]. During the first wave in spring 2020, general population-based control physical distancing measures30

were introduced in the Netherlands, which included refraining from hand-shaking, work from home if possible, self-31

isolation of persons with cold- or flu-like symptoms and closure of all schools. These contact-reduction measures32

were relaxed starting from May, and the incidence of COVID-19 started to increase again at the end of July [1].33

From the end of August onward, contact-reduction measures were reintroduced in a step-wise manner. Schools34
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closed during July and August for summer break, reopened at the end of August, and have remained open until35

this day (December 7, 2020), with the exception of a one-week autumn break. Some measures were implemented36

in schools after the summer break to reduce transmission. Students and teachers in secondary schools have to wear37

masks when not seated at their desks, and students have to keep distance from teachers. A student with cold- or38

flu-like symptoms has to stay at home.39

The step-wise increase in control measures after the summer started with earlier closing times of bars and restaurants,40

reinforcement of working at home (in September), followed by closure of all bars and restaurants, theaters, cinemas41

and other cultural meeting places in November and obligatory mask wearing in all public places since December 1.42

Estimated effective reproduction numbers (Re) were about 1.3 at the end of August and about 1.0 since November43

13th [1]. The aim of the implemented measures was to reduce Re to 0.8. The failure to achieve this might be due to44

reduced societal acceptance of control measures, and/or due to the lack of schools closure. The role of children and45

their contacts during school hours in the spread of SARS-CoV-2 is in fact not well understood [2]. In this study,46

we explored this role with a mathematical model fitted to COVID-19 data from the Netherlands.47

Closure of schools is considered an effective strategy to contain an influenza pandemic [3], based on both model48

calculations and observational studies of the influence of school holidays on the spread of influenza [4, 5]. The49

reasons for this are the high contact rates in young age groups [6] and the susceptibility of children and young50

people to the influenza virus. In contrast to influenza, children seem to be less susceptible to SARS-CoV-2 than51

adults and, based on sparse data, the susceptibility to SARS-CoV-2 increases with age [7, 8].52

In the absence of empirical SARS-CoV-2 data, mathematical modeling can help to quantify the role of different53

age groups in the distribution of SARS-CoV-2 in the population [9], and to evaluate the impact of interventions54

on transmission [10–13]. Such models can estimate the reduction in the effective reproduction number for different55

contact-reduction scenarios within or outside school environments. Model predictions about the relative epidemic56

impacts of school- and non-school-based measures can assist policymakers to select sets of measures during different57

stages of the pandemic that optimally balance potential harms and benefits. Predictions generated by models that58

include differences in susceptibility and contract rates in different age groups can also aid in deciding which school59

age groups should be the primary target of school-based interventions.60

We used an age-structured transmission model for SARS-CoV-2 fitted to the number of hospital admissions due61

to COVID-19 and seroprevalence during spring 2020 in the Netherlands to evaluate the impact of reducing school62

and other (non-school-related) contacts in society to control the second wave of COVID-19 in the autumn of 2020.63

We provide a comparative impact of these measures on the effective reproduction number in August 2020, before64

the most recent set of measures was implemented, and in November 2020, when the most recent measures were65

still in place. We assess which combinations of school and non-school related measures are most likely successful66

in reducing the reproduction number to below 1 and which school ages should be targeted to design effective67

school-based interventions.68
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Methods69

Overview70

Estimates of epidemiological parameters were obtained by fitting a transmission model to age-stratified COVID-1971

hospital admission data (n = 10, 961) and cross-sectional age-stratified SARS-CoV-2 seroprevalence data (n =72

3, 207) [14]. The model equipped with parameter estimates was subsequently used to investigate the impact of73

school- and non-school-based measures on controlling the pandemic.74

Data75

The hospital data included n = 10, 961 COVID-19 hospitalizations by date of admission and stratified by age during76

the period of 69 days following the first official case in the Netherlands (27 February 2020).77

The SARS-CoV-2 seroprevalence data was taken from a cross-sectional population-based serological study carried78

out in April-May 2020 [14]. A total of 40 municipalities were randomly selected from the Netherlands, with79

probabilities proportional to their population size. From these municipalities, an age-stratified sample was drawn80

from the population register, and 6, 102 persons were invited to participate. Serum samples and questionnaires were81

obtained from 3, 207 participants and included in the analyses. The majority of blood samples were drawn in the82

first week of April.83

Our analyses made use of the demographic composition of the Dutch population in July 2020 from Statistics84

Netherlands [15] and age-stratified contact data for the Netherlands [16,17]. The contact rates before the pandemic85

were based on a cross-sectional survey carried out in 2016/2017, where participants reported the number and age of86

their contacts during the previous day [16]. The contact rates after the first lockdown were based on the same survey87

which was repeated in a sub-sample of the participants in April 2020 (PIENTER Corona study) [16]. School-specific88

contact rates for the Dutch population before the pandemic were taken from the POLYMOD study [6,17].89

Transmission model90

We used a deterministic compartmental model describing SARS-CoV-2 transmission in a population stratified by91

infection status and age (Figure 1 A). The dynamics of the model follows the Susceptible-Exposed-Infectious-92

Recovered structure. Persons in age group k, where k = 1, ..., n, are classified as susceptible (Sk), infected but not93

yet infectious (exposed, Ek), infectious in m stages (Ik,p, where p = 1, . . . ,m), hospitalized (Hk) and recovered94

without hospitalization (Rk). Susceptible persons (Sk) can acquire infection via contact with infectious persons95

(Ik,p) and become latently infected (Ek) at a rate βkλk, where λk is the force of infection, and βk is the reduction96

in susceptibility to infection of persons in age group k compared to persons in age group n. After the latent period97

(duration 1/α days), exposed persons become infectious (Ik,1). Infectious persons progress through (m− 1) stages98

of infection (Ik,p, where p = 2, . . . ,m) at rate γm, after which they recover (Rk). Inclusion of m identical infectious99
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Figure 1. (A) Schematic of the transmission model. Black arrows show epidemiological transitions. Red
arrows indicate the compartments contributing to the force of infection. Susceptible persons in age group k (Sk),
where k = 1, . . . , n, become latently infected (Ek) via contact with infectious persons in m infectious stages (Ik,p,
p = 1, . . . ,m) at a rate βkλk, where λk is the force of infection, and βk is the reduction in susceptibility to
infection of persons in age group k compared to persons in age group n. Exposed persons (Ek) become infectious
(Ik,1) at rate α. Infectious persons progress through (m− 1) infectious stages at rate γm, after which they recover
(Rk). From each stage, infectious persons are hospitalized at rate νk. Table 1 gives the summary of the model
parameters. (B)-(D) Contact rates. (B) and (C) show contact rates in all locations before the pandemic and
after the first lockdown (April 2020), respectively. (D) shows contact rates at schools before the pandemic. The
color represents the average number of contacts a person in a given age group had with persons in another age
group.
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stages allows for the tuning of the distribution of the infectious period, interpolating between an exponentially100

distributed infectious period (m = 1) and a fixed infectious period (m→∞). Intermediate values of m correspond101

to an Erlang-distributed infectious period with mean 1/γ and standard deviation 1/[γ
√
m]. Hospitalization (Hk)102

of infectious persons (Ik,p) occurs at rate νk. Since the model is fit to hospital admissions data, the disease-related103

mortality and discharge from the hospital are not explicitly modeled. Given the timescale of the pandemic and the104

lack of reliable data on reinfections, we assume that recovered individuals cannot be reinfected. As the timescale of105

the pandemic is short compared to the average lifespan of persons, we neglected natural birth and death processes,106

and the population size in the model stays constant.107

We assume that, before the first lockdown, the probability of transmission per contact between a susceptible and an108

infectious individual, ε, is independent of the age of two individuals. After introduction of the control measures in109

March 2020, this probability of transmission decreased to εζ1, where 0 ≤ ζ1 ≤ 1. (1−ζ1) then denotes the reduction110

in the probability of transmission due to general population-based measures that are not explicitly included in the111

model, such as refraining from shaking hands, physical distancing, mask-wearing, and self-isolation of symptomatic112

persons. We denote the general contact rate of a person in age group k with persons in age group l, ckl, and the113

contact rates specific to the periods before and after the first lockdown, bkl, and, akl, respectively (see Figures 1 B114

and C). We model the transition in the general contact rate using a linear combination115

ckl = [1− f(t)]bkl + ζ1f(t)akl, (1)116

where the contribution of the contact rate after the first lockdown is given by the logistic function117

f(t) =
1

1 + e−K1(t−t1)
(2)118

with the mid-point value t1 and the logistic growth K1. The parameter K1 governs the speed at which control119

measures are rolled out, and t1 is the mid-time point of the lockdown period (Figure S1). The special cases of120

f = 0 and f = 1 describe the contact rate before and after the first lockdown, with f values between 0 and 1121

corresponding to contact rates at the intermediate time points.122

Similarly, the contact rate incorporating the relaxation of control measures after the first lockdown is modeled as123

follows124

ckl = ζ1g(t)akl + [1− g(t)]ζ2(bkl − skl) + ωskl, (3)125

where g(t) = 1/
[
1 + eK2(t−t2)

]
with the mid-point value t2 > t1 and the logistic growth K2. In Eq. 3, the first two126

terms describe the increase of non-school contacts from the level after the first lockdown to their pre-lockdown level.127

The parameter ζ2 ≥ ζ1, 0 ≤ ζ2 ≤ 1 implies that the probability of transmission increased due to reduced adherence128

to control measures. The last term describes opening of schools which we assume to happen instantaneously, where129
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skl denotes the school contact rate at the pre-lockdown level (Figure 1 D), and ω, 0 ≤ ω ≤ 1 is the proportion130

of retained school contacts. Schools functioning without any measures correspond to ω = 1. Schools closure is131

achieved by setting ω = 0. The summary of the model parameters is given in Table 1.132

Table 1. Summary of the model parameters.

Description (unit) Notation Reference

Constant parameters
Number of age groups n 10
Number of infectious stages m 3
Basic reproduction number R0 Estimated using the method in [18]
Effective reproduction number Re Estimated using the method in [18]
Probability of transmission per contact ε Estimated
Reduction in post-lockdown probability of transmission per contact (1− ζ1) Estimated
Latent period (days) 1/α Estimated
Rate of moving between infectious stages (1/day) γm Estimated
Contribution of the contact rate after the lockdown f(t) = 1/

[
1 + e−K1(t−t1)

]
Eq. 2

Mid-point value of the logistic function (days) t1 Estimated
Logistic growth (1/day) K1 Estimated
Over-dispersion parameter for the NegBinom distribution for hospitalizations r Estimated
Proportion of school contacts ω [0,1]
Reduction in probability of transmission per contact during relaxation (1− ζ2) [0,1], ζ2 ≥ ζ1
Initial fraction of infected persons θ Estimated
Age-specific parameters∗

Force of infection (1/day) λk Eq. 5
Hospitalization rate (1/day) νk Estimated
Susceptibility of age group k relative to age group n βk Estimated
General contact rate (1/day) ckl Eqs. 1 and 3
Contact rate before the pandemic (1/day) bkl [16]
Contact rate after the first lockdown (1/day) akl [16]
School contact rate before the pandemic (1/day) skl [6, 17]
Population size of age group k Nk [15]

∗Indices k and l denote the age groups k, l = 1, . . . , n.

Model equations133

The model was implemented using a system of ordinary differential equations as follows134

dSk(t)

dt
= −βkλk(t)Sk(t), (4)135

dEk(t)

dt
= βkλk(t)Sk(t)− αEk(t),136

dIk,1(t)

dt
= αEk(t)− (γm+ νk)Ik,1(t),137

dIk,p(t)

dt
= γmIk,p−1(t)− (γm+ νk)Ik,p(t), p = 2, . . . ,m,138

dRk(t)

dt
= γmIk,m(t),139

dHk(t)

dt
= νk

m∑
p=1

Ik,p(t),140

where Sk, Ek, Rk and Hk are the numbers of persons in age group k, k = 1, . . . , n, who are susceptible, exposed,141

recovered and hospitalized, respectively. The number of infectious persons in age group k and stage p = 1, . . . ,m is142
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denoted Ik,p. The force of infection is given by143

λk(t) = ε
n∑

l=1

m∑
p=1

ckl
Il,p(t)

Nl
, (5)144

where Nk is the number of individuals in age group k, Nk = Sk + Ek +
m∑

p=1
Ik,p +Hk + Rk. We took 22 February145

2020 as starting date (t0) for the pandemic in the Netherlands, which is 5 days prior to the first officially notified146

case. We assumed that there were no hospitalizations during this 5 day period. As initial condition for the model,147

we assume that a fraction θ of each age group was infected at time t0, equally distributed between the exposed and148

infectious persons, i.e., Ek(t0) = 1
2θNk, Ik,p(t0) = 1

2mθNk and Sk(t0) = (1− θ)Nk.149

The model was implemented in Mathematica 10.0.2.0. The code reproducing the results of this study is available150

at https://github.com/lynxgav/COVID19-schools.151

Observation model and parameter estimation152

Given predictions of the model, we calculated the likelihood of the data as follows. In the model, infectious153

individuals are hospitalized at a continuous rate νk
∑m

p=1 Ik,p. However, the hospitalization data consists of a154

discrete number of hospital admissions hk,i on day Ti for each age class k. As the probability of hospitalization155

is relatively small, we made the simplifying assumption that the daily incidence of hospitalizations is proportional156

to the prevalence of infectious individuals at that time point. To accommodate errors in reporting and within age157

class variability of the hospitalization rate, we allowed for over-dispersion in the number of hospitalizations using a158

Negative-Binomial distribution, i.e.,159

hk,i ∼ NegBinom
(
νk
∑m

p=1Ik,p(Ti), r
)
, (6)160

where we parameterize the NegBinom(µ, r) distribution with the mean µ and over-dispersion parameter r, such161

that the variance is equal to µ+ µ2/r.162

We calculated the likelihood of the seroprevalence data using the model prediction of the fraction of non-susceptible163

individuals in each age class 1−Sk(T )/Nk. Here T denotes the median sampling time minus the expected duration164

from infection to seroconversion. We assumed that the probability of finding a seropositive individual in a random165

sample from the population is equal to the fraction of non-susceptible individuals, leading to a Binomial distribution166

for the number of positive samples `k among all samples Lk from age group k167

`k ∼ Binom (Lk, 1− Sk(T )/Nk) . (7)168

Parameters were estimated in a Bayesian framework using methods we developed before [19, 20]. We used age-169
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specific contact rates with ten age groups, defined by the following age intervals [0,5), [5,10), [10,20), [20,30),170

[30,40), [40,50), [50,60), [60,70), [70,80) years old and the group of all persons older than 80 years referred to as171

80+ age group. Due to the low number of hospitalizations in young persons, we assumed that hospitalization172

rates in the first three age groups (i.e., [0,20) years old) were equal. The relative susceptibility was estimated for173

persons in [0,20), [20,60) and 60+ age categories, where 60+ age category was used as the reference [7]. As the age174

groups for which the seroprevalence was reported [14] are different from the age groups used in our model, we used175

demographic data from the Netherlands [15] and the smoothed age-specific seroprevalence curve estimated by Vos et176

al. [14] to correct for this discrepancy. The Bayesian prior distributions for the estimated parameters (see Table 1)177

are listed in Table 2. In the main text, we presented results for three infectious classes (m = 3) corresponding to178

Erlang-distributed infectious periods. The model was fitted to the data using the Hamiltonian Monte Carlo method179

as implemented in Stan (https://www.mc-stan.org) [21]. We used 4 parallel chains of length 1500 with a warm-up180

phase of length 1000, resulting in 2000 parameter samples from the posterior distribution. The data and the Stan181

and R scripts with all parameter settings are available at https://github.com/lynxgav/COVID19-schools.182

Table 2. Prior distributions for the Bayesian statistical model. The scale parameter of the normal and
log-normal distributions is equal to the standard deviation.

Parameter Prior Explanation

ε Uniform(0, 1) flat prior
α InvGamma(32.25, 9.75) 99% of the prior density of 1/α between 2 and 5 days
γ InvGamma(22.6, 2.44) 99% of the prior density of 1/γ between 5 and 15 days
νk folded-N (0, 5) vague prior
β[0,20) LogNormal(−1.47, 0.1) Log-odds −1.47 = log(0.23) based on prior estimates [7]
β[20,60) LogNormal(−0.45, 0.1) Log-odds −0.45 = log(0.64) based on prior estimates [7]
r LogNormal(5, 2) vague prior
ζ1 folded-N (1, 0.1) a priori, we expect the reduction in contacts after the first lockdown to

account for most of the decrease in the transmission rate
t1 N (23, 7) the mean of t1 is given by the day of initiation of most drastic social

distancing measures (March 15); most measures were taken within two
weeks from this date

K1 Exp(1) with K1 = 1 the uptake of measures takes approximately 6 days
θ Uniform(10−7, 5 · 10−4) vague prior allowing for approximately 100–105 infections at time t0

Model outcomes183

We considered control measures aimed at reducing contact rate at schools or in all other locations. Main outcome184

measures were age-specific seroprevalence and hospital admissions. In addition, we evaluated the impact of a control185

measure by computing the effective reproduction number (Re) using the next generation matrix method [18, 22],186

and percentage of contacts that need to be reduced to achieve control of the pandemic as quantified by Re = 1.187

9
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Results188

Epidemic dynamics189

The model shows a very good agreement between the estimated age-specific hospitalizations and the data (Figure190

2). The number of hospitalizations increases with age, with the highest peaks in hospitalizations observed in persons191

above 60 years old. The estimated probability of hospitalization increases nearly exponentially with age (as shown192

by an approximately linear relationship on the logarithmic scale, Figure 3), except for persons under 30 years old,193

in whom the number of hospitalizations was low. The estimated probability of hospitalization increased from 0.09%194

(95%CrI 0.05—0.15%) in persons under 20 years old to 4.37% (95%CrI 2.80—8.82%) in persons older than 80 years195

(Figure S2).196

Figure 2. Estimated age-specific hospital admissions. The black lines represent the estimated medians.
The dark gray lines correspond to 95% credible intervals obtained from 2000 parameter samples from the
posterior distribution, and the shaded region shows 95% Bayesian prediction intervals. The dots are daily
hospitalization admission data.

The model accurately reproduces the percentage of seropositive persons distributed across the age groups (Figure197

4). The median seroprevalence in the population was 2.7%, with the maximum seroprevalence observed in persons198

between 20 and 40 years old (about 3.5%). The lowest seroprevalence was among children in the 0 to 10 years199

age group (0.9%). Note that if our model did not include age-dependence of susceptibility to SARS-CoV-2, the200

seroprevalence peak would be expected among children because they have the largest numbers of contacts in the201

population.202

The estimated probability of transmission per contact was 0.07 (95%CrI 0.05—0.12) before the first lockdown and203

it decreased by 48.84% (95%CrI 23.81—87.44%) after the first lockdown. The reduction in susceptibility relative204

to susceptibility in persons above 60 years old was 23% (95%CrI 20—28%) in persons under 20 years old and 61%205
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Figure 3. Estimated age-specific probability of hospitalization. The violin shapes represent the marginal
posterior distribution of the probability of hospitalization in the model. The y-axis is shown on the log10 scale.

Figure 4. Estimated age-specific seroprevalence. The dots and error bars show the percentage of
seropositive persons based on the data. The error bars represent the 95% confidence (Jeffreys) interval of the
percentage. The violin shapes represent the marginal posterior distribution of the percentage of seropositive
persons in the model.
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(95%CrI 50—72%) for persons between 20 and 60 years old (Figure S3). The estimated basic reproduction number206

was 2.71 (95%CrI 2.15—5.18) in the absence of control measures (February 2020) (Figure S4 A), and dropped to207

0.62 (95%CrI 0.29—0.74) after the full lockdown (April 2020) (Figure S4 B). Figures S1, S2, S3, and S4 show an208

overview of all parameter estimates which are not given in the main text.209

Figure 5. Schematic timeline of the pandemic in the Netherlands. Outlined are times of the
introduction and relaxation of control measures, and the estimated effective reproduction numbers for A - start of
the pandemic (February 2020), B - full lockdown (April 2020), C - schools opening (August 2020), D - partial
lockdown (November 2020). See Figure S4 for the estimated reproduction numbers.

School and non-school based measures210

The sequence of measures implemented and lifted during the pandemic in the Netherlands and the respective211

estimated values of the effective reproduction numbers are shown schematically in Figure 5. We used the fitted212

model to separately determine the effect on the effective reproduction number of decreasing contacts in schools and213

of decreasing other (non-school-related) contacts in society in August 2020 (Figure 6) and November 2020 (Figure214

7). In doing so, we varied one type of contact and kept the other type constant. For each scenario, the reduction215

in contact rate was varied between 0% and 100%. The aim of reducing the number of contacts of each type is to216

decrease the effective reproduction number below 1.217

We first considered the situation in August 2020 (Figure 6), when schools had just opened after the summer holidays218

and when general control measures in the population were less stringent than in April (full lockdown). Between219
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August and December 2020, the only infection prevention measure in primary schools was the advice to teachers and220

pupils to stay at home in case of symptoms or a household member diagnosed with SARS-CoV-2 infection; physical221

distancing between teachers and pupils (but not between pupils) only applied to secondary schools. We therefore222

assumed that the effective number of contacts in schools was the same as before the pandemic (ω = 1). For the223

non-school related contacts we assumed that 1) the number of contacts increased after April 2020 (full lockdown)224

but was lower than before the pandemic, and that 2) the transmission probability per contact was lower due to225

general physical distancing and hygiene measures. The starting point of our analyses is an effective reproduction226

number of 1.31 (95%CrI 1.15—2.07) in accordance with the situation in August 2020 (Figure S4 C). Specifically, to227

achieve Re = 1.31 we fixed ζ2 at 0.67 (decrease in adherence to contact-reduction measures in August as compared228

to April, when ζ1 is estimated at 0.51) and g at 0.5 (half-way in the relaxation of non-school contacts).229

Assuming the state of the Dutch pandemic in August 2020, Figure 6 A demonstrates that non-school related contacts230

would have to be reduced by at least 50% to bring the effective reproduction number to 1 (if school related contacts231

do not change). A 100% reduction would resemble the number of contacts in April (full lockdown) and would bring232

the effective reproduction number to 0.83 (95%CrI 0.75—1.10). Figure 6 B demonstrates that reductions of school233

contacts would have a limited impact on the effective reproduction number (if non-school contacts do not change).234

A 100% reduction (complete closure of schools) would have reduced the effective reproduction number by only 10%235

(from 1.31 to 1.18 (95%CrI 1.04—1.83)).236

Figure 6. Impact of reduction of two types of contacts on the effective reproduction number in
August 2020. Percentage reduction in (A) other (non-school related) contacts and (B) school contacts, with the
number of the other type of contact kept constant in each of the two panels. The scenario with 0% reduction
describes the situation in August 2020, when schools just opened in the Netherlands. The scenario with 100%
reduction represents a scenario with either (A) maximum reduction in other (non-school related) contacts to the
level of April 2020 or (B) complete closure of schools. The solid black line describes the median, the shaded region
represents the 95% credible intervals obtained from 2000 parameter samples from the posterior distribution. The
red line is the starting value of Re (situation August 2020), the green line is the value of Re achieved for 100%
reduction in contacts. The blue line indicates Re of 1. To control the pandemic, Re < 1 is necessary.
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Subsequently, we considered the Dutch pandemic situation in November 2020 (Figure 7), when the measures im-237

plemented since the end of August (partial lockdown intended to prevent the second wave) had led to an effective238

reproduction number of 1.00 (95%CrI 0.94—1.33) (Figure S4 D), and, as described above, only limited control239

measures were taken in schools. Now, the impact of interventions targeted at reducing school contacts (Figure240

7 B) would reduce the effective reproduction number similarly as reducing non-school contacts in the rest of the241

population (Figure 7 A). Specifically, closing schools would reduce the effective reproduction number by 16% (from242

1.0 to 0.84 (95%CrI 0.81—0.90)) (Figure 7 B). Almost the same Re, i.e., 0.83 (95%CrI 0.75—1.10), would have been243

achieved by reducing non-school related contacts to the level of April 2020 while the schools remain open (Figure244

7 A).245

Figure 7. Impact of reduction of two types of contacts on the effective reproduction number in
November 2020. Percentage reduction in (A) other (non-school related) contacts and (B) school contacts, with
the number of the other type of contact kept constant in each of the two panels. The scenario with 0% reduction
describes the situation in November 2020. The scenario with 100% reduction represents a scenario with either (A)
maximum reduction in other (non-school related) contacts to the level of April 2020 or (B) complete closure of
schools. The solid black line describes the median, the shaded region represents the 95% credible intervals
obtained from 2000 parameter samples from the posterior distribution. The red line is the starting value of Re

(situation November 2020), the green line is the value of Re achieved for 100% reduction in contacts. To control
the pandemic, Re < 1 is necessary.

Interventions for different school ages246

Next we investigated the impact of targeting interventions at different age groups, starting from the situation in247

November 2020 with the effective reproduction number being 1 (Figure S4 D). Figure 8 A, B, and C show Re as248

a function of the reduction of school contacts in age groups of [0,5), [5,10) and [10,20) y.o., respectively. In each249

panel, we varied the number of school contacts in one age group while keeping the number of school contacts in the250

other two age groups constant. 0% reduction corresponds to the situation in November 2020, and 100% reduction251

represents a scenario with schools for students in a given age group closed. The model predicts a maximum impact252
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on Re from reducing contacts of 10 to 20 year old children (Figure 8 C). Closing schools for this age group only253

could decrease Re by about 8% (compare Figure 8 C and Figure 7 B where we expect the reduction of 16% after254

closing schools for all ages). Schools closure for children aged 5 to 10 years would reduce Re by about 5% (Figure 8255

B). Contact reductions among 0 to 5 year old children would have negligible impact on Re as shown in Figure 8 A.256

Figure 8. Impact of reduction of school contacts in different age groups on the effective
reproduction number in December 2020. Percentage reduction in school contacts among (A) [0, 5) y.o., (B)
[5, 10) y.o. and (C) [10, 20) y.o. In each panel, we varied the number of school contacts in one age group while
keeping the number of school contacts in the other two age groups constant. The scenario with 0% reduction
describes the situation in November 2020 with Re of about 1 (partial lockdown intended to prevent the second
wave), where all schools are open without substantial additional measures. The reduction of 100% in school
contacts represents a scenario with the structure of non-school contacts as in November 2020 and schools for
students in a given age group closed. The solid black line describes the median, the shaded region represents the
95% credible intervals obtained from 2000 parameter samples from the posterior distribution. The red line is the
starting value of Re = 1 (situation November 2020). The green line indicates the value of Re achieved when
schools for a given age group close.

Discussion257

We used an age-structured model for SARS-CoV-2 fitted to hospital admission and seroprevalence data during spring258

2020 to estimate the impact of school contacts on transmission of SARS-CoV-2 and to assess the effects of school-259

based measures, including schools closure, to mitigate the second wave in the autumn of 2020. We demonstrate how260

the relative impact of school-based measures aimed at reduction of contacts at schools on the effective reproduction261

number increases when the effects of non-school-based measures appear to be insufficient. These findings underscore262

the dilemma for policymakers of choosing between stronger enforcement of population-wide measures to reduce non-263

school-based contacts or measures that reduce school-based contacts, including complete closure of schools. For the264

latter choice, our model predicts highest impact from measures implemented for the oldest school ages. We used the265

Netherlands as a case example but our model code is freely available and can be readily adapted to other countries266

given the availability of hospitalization and seroprevalence data. The findings in our manuscript can be relevant for267

guiding policy decisions in the Netherlands, but also in countries where the contact structure in the population is268

similar to that of the Netherlands [6].269
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Our model integrates prior knowledge of epidemiological parameters and the quantitative assessment of the model270

uncertainties in a Bayesian framework. The model has been carefully validated to achieve an excellent fit to data271

of daily hospitalizations due to COVID-19 and seroprevalence by age. Furthermore, reproduction numbers at272

different time points of the pandemic correlated well with estimates obtained from independent sources [1]. Finally,273

susceptibility to infection with SARS-CoV-2 was estimated to increase with age, which corroborates published274

findings [7,8]. Compared to adults older than 60 years, the estimated susceptibility was about 20% for children aged275

0 to 20 years and about 60% for the age group of 20 to 60 years. However, even with extensive validation, we need to276

be careful when interpreting the predictions of our model as these depend on the sensitivity of serology to identify277

individuals with prior infection. Recent studies suggest that in persons who experience mild or asymptomatic278

infections, SARS-CoV-2 antibodies may not always be detectable post-infection [23,24].279

Naturally, our findings result from age-related differences in disease susceptibility and contact structure. Despite280

high numbers of contacts for children of all ages, and in particular in the age group of 10 to 20 years old, closing281

schools appeared to have much less impact on the effective reproduction number than physical distancing measures282

outside the school environment. In fact, measures effectively reducing non-school contacts, similar to those measures283

implemented in response to the first pandemic wave in spring 2020, could have prevented a second wave in autumn284

without school closures. With an estimated effective reproduction number of 1.3 in August 2020, continuation of285

school closures would have had much lower effects than measures aiming to reduce non-school related contacts,286

which mainly occur in the adult population. Yet, that situation changes if the proposed measures fail. In November287

2020, the measures implemented since August had reduced the effective reproduction number to around 1, instead288

of achieving the target value of about 0.8. In that situation, as our findings demonstrate, additional physical289

distancing measures in schools could assist in reducing the effective reproduction number further, in particular290

when implemented in secondary schools. Our analyses suggest that physical distancing measures in the youngest291

children will have no impact on the control of SARS-CoV-2 infection. Of note, better adherence to non-school based292

measures would still have similar effects as reducing school-based contacts.293

Although there are several options for reducing the number of contacts between children at school, such as staggered294

start and end times and breaks, different forms of physical distancing for pupils and division of classes, the effects295

of such measures on transmission among children have not been quantified. Importantly, we have assumed that296

reductions in school-based contacts are not replaced by non-school-based contacts with similar transmission risk.297

Our modelling approach has several limitations. For estimating disease susceptibility we could only model children298

as group of 0 to 20 years old. As disease susceptibility increases with age, it seems obvious that effects of reduced299

school contacts are most prominent in older children. Assuming equal susceptibility across these ages may have300

underestimated to some extent the effect of reducing school contacts for children between 10 and 20 years. At the301

same time, we assumed that school contact patterns in August-November 2020 reflect the pre-pandemic situation.302

Yet, universal control measures in the Netherlands such as stay at home orders for symptomatic persons probably303
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lower infectious contacts in school settings too, meaning that some reduction compared to pre-pandemic levels of304

contacts could already be present in schools. Effects of these measures in school settings should be smaller than in305

the general population and are hard to estimate due to a large number of asymptomatic cases among children, and306

therefore were not taken into account. In this respect, the results reported here describe the maximum possible307

reduction in the effective reproduction number due to school interventions. Furthermore, the contact matrices308

available did not allow differentiation between various types of contacts outside schools (like work, leisure, transport309

etc.), as these were not available for periods during the pandemic. Therefore, we could not model the impact of310

reducing work-related or leisure-related contacts separately. We also could not include hospitalization data from311

the second wave of the pandemic due to lack of data availability.312

The potential effects of opening or closing schools in different phases of the pandemic have been reported in other313

studies [11, 25–30]. Also based on a mathematical model, Panovska-Griffiths et al. [25] predicted that without314

very high levels of testing and contact tracing reopening schools after summer with a simultaneous relaxation of315

measures will lead to a second wave in the United Kingdom, peaking in December 2020. Their model predicted316

that this peak could be postponed for two months (to February 2021) by a rotating timetable in schools. Very early317

in the pandemic, in March 2020, the Scientific Advisory Group for Emergencies in the United Kingdom, concluded318

that it would not be possible to get the effective reproduction number below 1 without closing schools [26]. In a319

modelling study on the impact of non-pharmaceutical interventions for COVID-19 in the United Kingdom, Davies320

et al. found that the impact of school closures was low [11]. In another modeling study Rice et al. [30] found that321

school closures during the first wave of the pandemic could increase overall mortality, due to death being postponed322

to a second wave. And based on an analysis of the impact of non-pharmaceutical measures in 41 countries between323

January and May 2020, Brauner et al. [27] concluded that closure of schools and universities had contributed the324

most to lowering the effective reproduction number. Yet, a major difficulty in estimating the effect of school closure325

based on observational data from the first wave is that other non-pharmaceutical interventions were implemented326

at or around the same time as school closures [31]. Similarly, lifting such measures often coincided with school327

re-openings. Observational data from the period after the first wave show conflicting results on within school328

transmission [32–35] and the effect of school reopening and interpretation is further hampered by the variety in329

control measures implemented in schools across countries. Finally, Munday et al. showed that reopening secondary330

schools is likely to have a greater impact on community transmission than reopening primary schools in England [28].331

While the modelling approach of [28] is different from ours, our findings are similar in the sense that secondary332

schools are predicted to make a larger contribution to transmission than primary schools, and are therefore more333

important for controlling COVID-19.334

In conclusion, we have demonstrated that the potential effects of school-based measures to reduce contacts between335

children, including school closures, markedly depends on the reduction in the effective reproduction number achieved336

by other measures. With remaining opportunities to reduce the effective reproduction number with non-school-337
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based measures, the additional benefit of school-based measures is low. Yet, if opportunities to reduce the effective338

reproduction number with non-school-based measures are considered to be exhausted or undesired for economic339

reasons and Re is still close to 1, the additional benefit of school-based measures may be considerable. In such340

situations, the biggest impact on transmission is achieved by reducing contacts in secondary schools.341
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Figure S1. Contribution of the contact rate after the first lockdown. We model the transition in the
general contact rate, ckl, as follows ckl = [1− f(t)]bkl + ζ1f(t)akl, where f is the contribution of the contact rate
after the first lockdown, bkl and akl are the contact rates specific to the periods before and after the first
lockdown. f is a logistic function with parameters K1 and t1 governing the speed and mid-way of lockdown
roll-out. The red and gray lines show the median and several individual estimated trajectories, respectively.
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Figure S2. Estimates of probabilities of hospitalization. Histograms are based on 2000 parameter samples
from the posterior distribution. The solid and the dashed lines correspond to the median and 95% credible
intervals.
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Figure S3. Parameter estimates. Histograms are based on 2000 parameter samples from the posterior
distribution. The solid and the dashed lines correspond to the median and 95% credible intervals.
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Figure S4. Reproduction numbers. Estimated reproduction numbers (A) at the beginning of the pandemic
(February 2020), (B) after the first full lockdown (April 2020), (C) at the time of school opening (August 2020),
and (D) after the second partial lockdown (November 2020). Histograms are based on 2000 parameter samples
from the posterior distribution. The solid and the dashed lines correspond to the median and 95% credible
intervals.
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